بهکارگیری ساختارهای ترکیبی از شبکههای عصبی بهمنظور تشخیص آریتمیهای قلبی با استفاده از ادغام ویژگیهای موجک و زمانی
نویسندگان
چکیده مقاله:
: در سالیان اخیر، استفاده از سیستمهای هوشمند در علوم مهندسی و بهویژه در تشخیص بیمارهای مختلف بهطور فزایندهای رو به افزایش است. در این مقاله نیز یک روش هوشمند ترکیبی برای تشخیص بیماریهای قلبی (آریتمیهای قلبی) ارائه شده است. اساس این روش بر استفاده از ساختارهای ترکیبی از شبکههای عصبی برای طبقهبندی کارکرد طبیعی و چهار کارکرد غیر طبیعی قلب است. در این ساختارهای ترکیبی، برخی از شبکههای عصبی بهعنوان میانجی و برخی از آنها بهعنوان متخصص استفاده شدهاند. در روش پیشنهادی، ابتدا پیشپردازش مناسب برای حذف نویز از سیگنال الکتروکاردیوگرافیانجام شده است. سپس، ویژگیهای مختلف زمانی (شامل پانزده ویژگی) و موجک (شامل پانزده ویژگی) از روی سیگنال عاری از نویز استخراج و با توجه به زیاد بودن تعداد ویژگیهای انتخاب شده، از روش تحلیل مولفههای اصلی برای ادغام این ویژگیها و کاهش ابعاد فضای ویژگی به هشت بعد استفاده شده است. در ادامه، ساختارهای ترکیبی پیشنهاد شده از شبکههای عصبی پرسپترون چندلایه و شبکههای عصبی پایهشعاعی برای طبقهبندی مناسب آریتمیها آموزش داده و کارایی آنها ارزیابی شده است. نتایج حاصل از پیادهسازی روی دادههای برچسب خورده پایگاه داده MIT/BIH ، کارآیی بهتر روش پیشنهادی در مقایسه با روشهای قبلی در تشخیص آریتمیهای قلبی را نشان میدهند.
منابع مشابه
ریزمقیاس کردن مکانی – زمانی سری های زمانی بارش با استفاده از مدل ترکیبی موجک – شبکه عصبی مصنوعی
با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک - شبکه عصبی مصنوعی (WANN)...
متن کاملThe effect of cyclosporine on asymmetric antibodies and serum transforming growth factor beta1 in abortion-prone model of mice CBA/J x DBA/2
كچ ي هد فده و هقباس : ي ک ي طقس زورب للع زا اه ي ،ررکم ا لماوع تلاخد ي ژولونوم ي ک ا رد ي ن قم طققس عون ي وراد دقشاب ي س ي روپسولک ي ،ن ح لدم رد طقس شهاک بجوم ي ناو ي CBA/j×DBA/2 م ي تنآ ددرگ ي داب ي اه ي ان و راققتم TGF-β لماوع زا عت مهم يي ن گلماح تشونرس هدننک ي سررب روظنم هب رضاح هعلاطم تسا ي ات ث ي ر اس ي روپسولک ي ن م رب ي از ا ي ن تنآ عون ي داب ي س و اه ي اکوت ي ن TGF...
متن کاملThe Study of Stressful Factors in Clinical Education for Nursing Students Studying in Nursing and Midwifery College in Khorramabad
کچ هدي پ شي مز هني فده و : شزومآ لاب يني شخب ساسا ي شزومآ مهم و راتسرپ ي تسا . و هنوگ ره دوج لکشم ي شزومآ رد لاب يني ، آراک يي هدزاب و ا ني شزومآ زا شخب راچد ار لکشم م ي دنک . فده اب رضاح شهوژپ سررب ي لماوع سرتسا از ي شزومآ لاب يني رد وجشناد ناي راتسرپ ي هدکشناد راتسرپ ي و يامام ي ماـجنا داـبآ مرـخ تسا هتفرگ . شور و داوم راک : رضاح هعلاطم کي هعلاطم صوت يفي عطقم ي تسا . د...
متن کاملپیشبینی هفتگی زبالة تولیدی با استفاده از مدل ترکیبی شبکة عصبی و تبدیل موجک
پیشبینی کمیت تولید، نقشی اساسی در بهینهسازی و برنامهریزی سیستم مدیریت مواد زاید جامد شهری دارد. اما به دلیل طبیعت ناهمگون و تأثیر عوامل متنوع و خارج از کنترل بر تولید، همواره با مشکلات زیادی همراه بوده است. شبکة عصبی مصنوعی اخیراً در بسیاری از کاربردهای مهندسی نظیر مهندسی محیط زیست به عنوان ابزاری قدرتمند در مدلسازی مورد توجه قرار گرفته است. در این تحقیق با توجه به دینامیک و پیچیده بودن سیستم...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 1- 16
تاریخ انتشار 2011-04-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023